A designed heme-[4Fe-4S] metalloenzyme catalyzes sulfite reduction like the native enzyme

See allHide authors and affiliations

Science  14 Sep 2018:
Vol. 361, Issue 6407, pp. 1098-1101
DOI: 10.1126/science.aat8474

Metals brought together do more

Enzymatic reduction of oxyanions such as sulfite (SO32−) requires the delivery of multiple electrons and protons, a feat accomplished by cofactors tailored for catalysis and electron transport. Replicating this strategy in protein scaffolds may expand the range of enzymes that can be designed de novo. Mirts et al. selected a scaffold protein containing a natural heme cofactor and then engineered a cavity suitable for binding a second cofactor—an iron-sulfur cluster (see the Perspective by Lancaster). The resulting designed enzyme was optimized through rational mutation into a catalyst with spectral characteristics and activity similar to that of natural sulfite reductases.

Science, this issue p. 1098; see also p. 1071


Multielectron redox reactions often require multicofactor metalloenzymes to facilitate coupled electron and proton movement, but it is challenging to design artificial enzymes to catalyze these important reactions, owing to their structural and functional complexity. We report a designed heteronuclear heme-[4Fe-4S] cofactor in cytochrome c peroxidase as a structural and functional model of the enzyme sulfite reductase. The initial model exhibits spectroscopic and ligand-binding properties of the native enzyme, and sulfite reduction activity was improved—through rational tuning of the secondary sphere interactions around the [4Fe-4S] and the substrate-binding sites—to be close to that of the native enzyme. By offering insight into the requirements for a demanding six-electron, seven-proton reaction that has so far eluded synthetic catalysts, this study provides strategies for designing highly functional multicofactor artificial enzymes.

View Full Text

Stay Connected to Science