Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin

See allHide authors and affiliations

Science  02 Nov 2018:
Vol. 362, Issue 6414, pp. 598-602
DOI: 10.1126/science.aaq0620

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Durable influenza protection

Vaccines are indispensable for the control and prevention of influenza, but there are several challenges to efficacy. Some individuals respond poorly to vaccination, and virus variation makes targeting optimal antigens difficult. Broadly neutralizing antibodies are one solution, but they have their own pitfalls, including limited cross-reactivity to both influenza A and B strains and the need for repeated injections. Now, Laursen et al. have developed multidomain antibodies with breadth and potency. Administered intranasally to mice with an adeno-associated virus vector, the antibodies provided durable and continuous protection from a panoply of influenza strains.

Science, this issue p. 598


Broadly neutralizing antibodies against highly variable pathogens have stimulated the design of vaccines and therapeutics. We report the use of diverse camelid single-domain antibodies to influenza virus hemagglutinin to generate multidomain antibodies with impressive breadth and potency. Multidomain antibody MD3606 protects mice against influenza A and B infection when administered intravenously or expressed locally from a recombinant adeno-associated virus vector. Crystal and single-particle electron microscopy structures of these antibodies with hemagglutinins from influenza A and B viruses reveal binding to highly conserved epitopes. Collectively, our findings demonstrate that multidomain antibodies targeting multiple epitopes exhibit enhanced virus cross-reactivity and potency. In combination with adeno-associated virus–mediated gene delivery, they may provide an effective strategy to prevent infection with influenza virus and other highly variable pathogens.

View Full Text