Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys

See allHide authors and affiliations

Science  23 Nov 2018:
Vol. 362, Issue 6417, pp. 933-937
DOI: 10.1126/science.aas8815

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Nanoparticle superalloy

Improving the strength of a metal alloy is hard to do without sacrificing the ductility. Yang et al. designed an iron-nickel-cobalt (Fe-Ni-Co) alloy laced with aluminum-titanium (Al-Ti) nanoparticles with both high strength and ductility. The key was getting the composition tuned correctly, because the Fe-Ni-Co matrix reacts with the Al-Ti nanoparticles. This was vital for avoiding environmental embrittlement, enhancing work hardening, and improving ductility.

Science, this issue p. 933


Alloy design based on single–principal-element systems has approached its limit for performance enhancements. A substantial increase in strength up to gigapascal levels typically causes the premature failure of materials with reduced ductility. Here, we report a strategy to break this trade-off by controllably introducing high-density ductile multicomponent intermetallic nanoparticles (MCINPs) in complex alloy systems. Distinct from the intermetallic-induced embrittlement under conventional wisdom, such MCINP-strengthened alloys exhibit superior strengths of 1.5 gigapascals and ductility as high as 50% in tension at ambient temperature. The plastic instability, a major concern for high-strength materials, can be completely eliminated by generating a distinctive multistage work-hardening behavior, resulting from pronounced dislocation activities and deformation-induced microbands. This MCINP strategy offers a paradigm to develop next-generation materials for structural applications.

View Full Text