Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys

See allHide authors and affiliations

Science  23 Nov 2018:
Vol. 362, Issue 6417, pp. 933-937
DOI: 10.1126/science.aas8815

Nanoparticle superalloy

Improving the strength of a metal alloy is hard to do without sacrificing the ductility. Yang et al. designed an iron-nickel-cobalt (Fe-Ni-Co) alloy laced with aluminum-titanium (Al-Ti) nanoparticles with both high strength and ductility. The key was getting the composition tuned correctly, because the Fe-Ni-Co matrix reacts with the Al-Ti nanoparticles. This was vital for avoiding environmental embrittlement, enhancing work hardening, and improving ductility.

Science, this issue p. 933


Alloy design based on single–principal-element systems has approached its limit for performance enhancements. A substantial increase in strength up to gigapascal levels typically causes the premature failure of materials with reduced ductility. Here, we report a strategy to break this trade-off by controllably introducing high-density ductile multicomponent intermetallic nanoparticles (MCINPs) in complex alloy systems. Distinct from the intermetallic-induced embrittlement under conventional wisdom, such MCINP-strengthened alloys exhibit superior strengths of 1.5 gigapascals and ductility as high as 50% in tension at ambient temperature. The plastic instability, a major concern for high-strength materials, can be completely eliminated by generating a distinctive multistage work-hardening behavior, resulting from pronounced dislocation activities and deformation-induced microbands. This MCINP strategy offers a paradigm to develop next-generation materials for structural applications.

View Full Text

Stay Connected to Science