Spin transport in a Mott insulator of ultracold fermions

See allHide authors and affiliations

Science  25 Jan 2019:
Vol. 363, Issue 6425, pp. 383-387
DOI: 10.1126/science.aat4387

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Simulating transport with cold atoms

Much can be learned about the nature of a solid from how charge and spin propagate through it. Transport experiments can also be performed in quantum simulators such as cold atom systems, in which individual atoms can be imaged using quantum microscopes. Now, two groups have investigated transport in the so-called Fermi-Hubbard model using a two-dimensional optical lattice filled with one fermionic atom per site (see the Perspective by Brantut). Moving away from half-filling to enable charge transport, Brown et al. found that the resistivity had a linear temperature dependence, not unlike that seen in the strange metal phase of cuprate superconductors. In a complementary study on spin transport, Nichols et al. observed spin diffusion driven by superexchange coupling.

Science, this issue p. 379, p. 383; see also p. 344


Strongly correlated materials are expected to feature unconventional transport properties, such that charge, spin, and heat conduction are potentially independent probes of the dynamics. In contrast to charge transport, the measurement of spin transport in such materials is highly challenging. We observed spin conduction and diffusion in a system of ultracold fermionic atoms that realizes the half-filled Fermi-Hubbard model. For strong interactions, spin diffusion is driven by super-exchange and doublon-hole–assisted tunneling, and strongly violates the quantum limit of charge diffusion. The technique developed in this work can be extended to finite doping, which can shed light on the complex interplay between spin and charge in the Hubbard model.

View Full Text

Stay Connected to Science