Quantum interface of an electron and a nuclear ensemble

See allHide authors and affiliations

Science  05 Apr 2019:
Vol. 364, Issue 6435, pp. 62-66
DOI: 10.1126/science.aaw2906

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

An exercise in spin control

Semiconductor quantum dots offer the highest rate and quality of single photons among all other solid-state quantum light sources. However, they lack access to a long-lived quantum memory, such as a proximal nuclear spin, that would make them competitive for large-scale quantum architectures. Gangloff et al. used the spin of a single electron and light to cool an ensemble of about 30,000 nuclei within semiconductor quantum dots (see the Perspective by Bayer). They then extended this approach to manipulate individual nuclear spins. The ability to manipulate the ensemble of nuclei coherently, down to the single nuclear spin, could lead to the realization of a quantum dot network where each node has its own dedicated quantum memory.

Science, this issue p. 62; see also p. 30


Coherent excitation of an ensemble of quantum objects underpins quantum many-body phenomena and offers the opportunity to realize a memory that stores quantum information. Thus far, a deterministic and coherent interface between a spin qubit and such an ensemble has remained elusive. In this study, we first used an electron to cool the mesoscopic nuclear spin ensemble of a semiconductor quantum dot to the nuclear sideband–resolved regime. We then implemented an all-optical approach to access individual quantized electronic-nuclear spin transitions. Lastly, we performed coherent optical rotations of a single collective nuclear spin excitation—a spin wave. These results constitute the building blocks of a dedicated local memory per quantum-dot spin qubit and promise a solid-state platform for quantum-state engineering of isolated many-body systems.

View Full Text