Report

Conformationally supple glucose monomers enable synthesis of the smallest cyclodextrins

See allHide authors and affiliations

Science  17 May 2019:
Vol. 364, Issue 6441, pp. 674-677
DOI: 10.1126/science.aaw3053

You are currently viewing the editor's summary.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Sweet spot for making oligosaccharides

Sugars pose a challenge for chemists: how to string together functional group–rich building blocks that can adopt multiple conformations. Two papers in this issue used sugar building blocks constrained by a macrocyclic linker to encourage formation of a specific glycosidic linkage (see the Perspective by Pohl). Ikuta et al. used glucose building blocks containing a linker that changes the sugar conformation to synthesize cyclic oligomers with only three or four units. The linker changes the conformation of the glucose monomers, enabling them to come together despite the strain in the final structure. Komura et al. prepared sialic acid building blocks with a linker that allows for selective formation of the α-anomeric linkage with a range of nucleophiles. They synthesized dimers of sialic acid with many different linkages and a pentamer with four α(2,8) linkages. This method enabled chemical synthesis of components of mammalian glycans involved in brain development, cell adhesion, and immune response.

Science, this issue p. 674, p. 677; see also p. 631