Research Article

Germline selection shapes human mitochondrial DNA diversity

See allHide authors and affiliations

Science  24 May 2019:
Vol. 364, Issue 6442, eaau6520
DOI: 10.1126/science.aau6520

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Heteroplasmy incidence in mitochondrial DNA

In humans, mitochondrial DNA (mtDNA) is predominantly maternally inherited. mtDNA is under selection to prevent heteroplasmy—the transmission of multiple genetic variants into the next generation. Wei et al. explored human mtDNA sequences to determine mtDNA genome structure, selection, and transmission. Whole-genome sequencing revealed that about 45% of individuals carry heteroplasmic mtDNA sequences at levels greater than 1% of their total mtDNA. Furthermore, studies of more than 1500 mother-offspring pairs indicated that the female line selected which mtDNA variants were passed on to children. This effect was influenced by the mother's nuclear genetic background. Thus, mtDNA is under selection at specific loci in the human germ line.

Science, this issue p. eaau6520

Structured Abstract

INTRODUCTION

Only 2.4% of the 16.5-kb mitochondrial DNA (mtDNA) genome shows homoplasmic variation at >1% frequency in humans. Migration patterns have contributed to geographic differences in the frequency of common genetic variants, but population genetic evidence indicates that selection shapes the evolving mtDNA phylogeny. The mechanism and timing of this process are not clear.

Unlike the nuclear genome, mtDNA is maternally transmitted and there are many copies in each cell. Initially, a new genetic variant affects only a proportion of the mtDNA (heteroplasmy). During female germ cell development, a reduction in the amount of mtDNA per cell causes a “genetic bottleneck,” which leads to rapid segregation of mtDNA molecules and different levels of heteroplasmy between siblings. Although heteroplasmy is primarily governed by random genetic drift, there is evidence of selection occurring during this process in animals. Yet it has been difficult to demonstrate this convincingly in humans.

RATIONALE

To determine whether there is selection for or against heteroplasmic mtDNA variants during transmission, we studied 12,975 whole-genome sequences, including 1526 mother–offspring pairs of which 45.1% had heteroplasmy affecting >1% of mtDNA molecules. Harnessing both the mtDNA and nuclear genome sequences, we then determined whether the nuclear genetic background influenced mtDNA heteroplasmy, validating our findings in another 40,325 individuals.

RESULTS

Previously unknown mtDNA variants were less likely to be inherited than known variants, in which the level of heteroplasmy tended to increase on transmission. Variants in the ribosomal RNA genes were less likely to be transmitted, whereas variants in the noncoding displacement (D)–loop were more likely to be transmitted. MtDNA variants predicted to affect the protein sequence tended to have lower heteroplasmy levels than synonymous variants. In 12,975 individuals, we identified a correlation between the location of heteroplasmic sites and known D-loop polymorphisms, including the absence of variants in critical sites required for mtDNA transcription and replication.

We defined 206 unrelated individuals for which the nuclear and mitochondrial genomes were from different human populations. In these individuals, new population-specific heteroplasmies were more likely to match the nuclear genetic ancestry than the mitochondrial genome on which the mutations occurred. These findings were independently replicated in 654 additional unrelated individuals.

CONCLUSION

The characteristics of mtDNA in the human population are shaped by selective forces acting on heteroplasmy within the female germ line and are influenced by the nuclear genetic background. The signature of selection can be seen over one generation, ensuring consistency between these two independent genetic systems.

Germline selection of human mitochondrial DNA is shaped by the nuclear genome.

(Top left) Initially, new mtDNA variants are heteroplasmic, with the proportion changing during maternal transmission. (Bottom left) Selection during the transmission of mtDNA heteroplasmy. Transmitted variants are more likely to have been seen before as homoplasmic polymorphisms. (Right) New haplogroup-specific variants are more likely to match the nuclear genetic ancestry than the mtDNA ancestry.

Abstract

Approximately 2.4% of the human mitochondrial DNA (mtDNA) genome exhibits common homoplasmic genetic variation. We analyzed 12,975 whole-genome sequences to show that 45.1% of individuals from 1526 mother–offspring pairs harbor a mixed population of mtDNA (heteroplasmy), but the propensity for maternal transmission differs across the mitochondrial genome. Over one generation, we observed selection both for and against variants in specific genomic regions; known variants were more likely to be transmitted than previously unknown variants. However, new heteroplasmies were more likely to match the nuclear genetic ancestry as opposed to the ancestry of the mitochondrial genome on which the mutations occurred, validating our findings in 40,325 individuals. Thus, human mtDNA at the population level is shaped by selective forces within the female germ line under nuclear genetic control, which ensures consistency between the two independent genetic lineages.

    View Full Text