Report

Metastable ferroelectricity in optically strained SrTiO3

See allHide authors and affiliations

Science  14 Jun 2019:
Vol. 364, Issue 6445, pp. 1075-1079
DOI: 10.1126/science.aaw4911

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Driving strontium titanate ferroelectric

Hidden phases are metastable collective states of matter that are typically not accessible on equilibrium phase diagrams. Nova et al. used infrared pulses to excite higher-frequency lattice modes that drive the crystal into a metastable ferroelectric phase, a phase that can persist for many hours. X. Li et al. used terahertz fields to drive the soft mode that moves the ions in the crystal into the positions they occupy in the new phase. The ferroelectric phase in this case was transient, lasting on the order of 10 picoseconds. Because these hidden phases can host exotic properties in otherwise conventional materials, the accessibility to and control of such hidden phases may broaden potential functionality and applications.

Science, this issue p. 1075, p. 1079

Abstract

Fluctuating orders in solids are generally considered high-temperature precursors of broken symmetry phases. However, in some cases, these fluctuations persist to zero temperature and prevent the emergence of long-range order. Strontium titanate (SrTiO3) is a quantum paraelectric in which dipolar fluctuations grow upon cooling, although a long-range ferroelectric order never sets in. Here, we show that optical excitation of lattice vibrations can induce polar order. This metastable polar phase, observed up to temperatures exceeding 290 kelvin, persists for hours after the optical pump is interrupted. Furthermore, hardening of a low-frequency vibration points to a photoinduced ferroelectric phase transition, with a spatial domain distribution suggestive of a photoflexoelectric coupling.

View Full Text