Report

Reconfigurable ferromagnetic liquid droplets

See allHide authors and affiliations

Science  19 Jul 2019:
Vol. 365, Issue 6450, pp. 264-267
DOI: 10.1126/science.aaw8719

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Liquid reconfigurable ferromagnetic materials

Ferromagnetic materials show a permanent magnetic dipole, whereas superparamagnetic ones only show magnetic properties under an applied field. Some materials, like ferrofluids, show liquid-like behavior but do not retain their magnetization in the absence of an applied field. Liu et al. show remnant magnetization of otherwise superparamagnetic magnetite nanoparticles at an oil-water interface of emulsion droplets (see the Perspective by Dreyfus). The permanent magnetization could be controlled by coupling and uncoupling the magnetization of individual nanoparticles, making it possible to “write and erase” shapes of the droplets or to elongate them into cylinders.

Science, this issue p. 264; see also p. 219

Abstract

Solid ferromagnetic materials are rigid in shape and cannot be reconfigured. Ferrofluids, although reconfigurable, are paramagnetic at room temperature and lose their magnetization when the applied magnetic field is removed. Here, we show a reversible paramagnetic-to-ferromagnetic transformation of ferrofluid droplets by the jamming of a monolayer of magnetic nanoparticles assembled at the water-oil interface. These ferromagnetic liquid droplets exhibit a finite coercivity and remanent magnetization. They can be easily reconfigured into different shapes while preserving the magnetic properties of solid ferromagnets with classic north-south dipole interactions. Their translational and rotational motions can be actuated remotely and precisely by an external magnetic field, inspiring studies on active matter, energy-dissipative assemblies, and programmable liquid constructs.

View Full Text