Report

3D bioprinting of collagen to rebuild components of the human heart

See allHide authors and affiliations

Science  02 Aug 2019:
Vol. 365, Issue 6452, pp. 482-487
DOI: 10.1126/science.aav9051

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

If I only had a heart

3D bioprinting is still a fairly new technique that has been limited in terms of resolution and by the materials that can be printed. Lee et al. describe a 3D printing technique to build complex collagen scaffolds for engineering biological tissues (see the Perspective by Dasgupta and Black). Collagen gelation was controlled by modulation of pH and could provide up to 10-micrometer resolution on printing. Cells could be embedded in the collagen or pores could be introduced into the scaffold via embedding of gelatin spheres. The authors demonstrated successful 3D printing of five components of the human heart spanning capillary to full-organ scale, which they validated for tissue and organ function.

Science, this issue p. 482; see also p. 446

Abstract

Collagen is the primary component of the extracellular matrix in the human body. It has proved challenging to fabricate collagen scaffolds capable of replicating the structure and function of tissues and organs. We present a method to 3D-bioprint collagen using freeform reversible embedding of suspended hydrogels (FRESH) to engineer components of the human heart at various scales, from capillaries to the full organ. Control of pH-driven gelation provides 20-micrometer filament resolution, a porous microstructure that enables rapid cellular infiltration and microvascularization, and mechanical strength for fabrication and perfusion of multiscale vasculature and tri-leaflet valves. We found that FRESH 3D-bioprinted hearts accurately reproduce patient-specific anatomical structure as determined by micro–computed tomography. Cardiac ventricles printed with human cardiomyocytes showed synchronized contractions, directional action potential propagation, and wall thickening up to 14% during peak systole.

View Full Text