Report

Generation and manipulation of Schrödinger cat states in Rydberg atom arrays

See allHide authors and affiliations

Science  09 Aug 2019:
Vol. 365, Issue 6453, pp. 570-574
DOI: 10.1126/science.aax9743

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Entanglement goes large

The success of quantum computing relies on the ability to entangle large-scale systems. Various platforms are being pursued, with architectures based on superconducting qubits and trapped atoms being the most advanced. By entangling up to 20 qubits, Omran et al. and Song et al.—working with Rydberg atom qubits and superconducting qubits, respectively—demonstrate how far these platforms have reached. The demonstrated controllable generation and detection of entanglement on such quantum systems is promising for the development of large-scale quantum processors.

Science, this issue p. 570, p. 574

Abstract

Quantum entanglement involving coherent superpositions of macroscopically distinct states is among the most striking features of quantum theory, but its realization is challenging because such states are extremely fragile. Using a programmable quantum simulator based on neutral atom arrays with interactions mediated by Rydberg states, we demonstrate the creation of “Schrödinger cat” states of the Greenberger-Horne-Zeilinger (GHZ) type with up to 20 qubits. Our approach is based on engineering the energy spectrum and using optimal control of the many-body system. We further demonstrate entanglement manipulation by using GHZ states to distribute entanglement to distant sites in the array, establishing important ingredients for quantum information processing and quantum metrology.

View Full Text