Report

Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2

See allHide authors and affiliations

Science  20 Sep 2019:
Vol. 365, Issue 6459, pp. 1286-1291
DOI: 10.1126/science.aav2334

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Magnetic Weyl semimetals

Weyl semimetals (WSMs)—materials that host exotic quasiparticles called Weyl fermions—must break either spatial inversion or time-reversal symmetry. A number of WSMs that break inversion symmetry have been identified, but showing unambiguously that a material is a time-reversal-breaking WSM is tricky. Three groups now provide spectroscopic evidence for this latter state in magnetic materials (see the Perspective by da Silva Neto). Belopolski et al. probed the material Co2MnGa using angle-resolved photoemission spectroscopy, revealing exotic drumhead surface states. Using the same technique, Liu et al. studied the material Co3Sn2S2, which was complemented by the scanning tunneling spectroscopy measurements of Morali et al. These magnetic WSM states provide an ideal setting for exotic transport effects.

Science, this issue p. 1278, p. 1282, p. 1286; see also p. 1248

Abstract

Bulk–surface correspondence in Weyl semimetals ensures the formation of topological “Fermi arc” surface bands whose existence is guaranteed by bulk Weyl nodes. By investigating three distinct surface terminations of the ferromagnetic semimetal Co3Sn2S2, we verify spectroscopically its classification as a time-reversal symmetry-broken Weyl semimetal. We show that the distinct surface potentials imposed by three different terminations modify the Fermi-arc contour and Weyl node connectivity. On the tin (Sn) surface, we identify intra–Brillouin zone Weyl node connectivity of Fermi arcs, whereas on cobalt (Co) termination, the connectivity is across adjacent Brillouin zones. On the sulfur (S) surface, Fermi arcs overlap with nontopological bulk and surface states. We thus resolve both topologically protected and nonprotected electronic properties of a Weyl semimetal.

View Full Text