Research Article

High thermoelectric performance in low-cost SnS0.91Se0.09 crystals

See allHide authors and affiliations

Science  27 Sep 2019:
Vol. 365, Issue 6460, pp. 1418-1424
DOI: 10.1126/science.aax5123

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Lower-cost thermoelectrics

Thermoelectric materials convert heat to electricity, making them attractive for heat harvesting or cooling applications. However, many high-performance thermoelectrics are made of expensive or toxic materials. He et al. found that a material composed of primarily tin and sulfur could be optimized to have relatively good thermoelectric properties. Introducing about 10% selenium to tin sulfide helped tune these properties by electronic band manipulation. This material is a step toward more earth-abundant, less toxic, and lower-cost thermoelectrics than the telluride-based materials currently in use.

Science, this issue p. 1418


Thermoelectric technology allows conversion between heat and electricity. Many good thermoelectric materials contain rare or toxic elements, so developing low-cost and high-performance thermoelectric materials is warranted. Here, we report the temperature-dependent interplay of three separate electronic bands in hole-doped tin sulfide (SnS) crystals. This behavior leads to synergistic optimization between effective mass (m*) and carrier mobility (μ) and can be boosted through introducing selenium (Se). This enhanced the power factor from ~30 to ~53 microwatts per centimeter per square kelvin (μW cm−1 K−2 at 300 K), while lowering the thermal conductivity after Se alloying. As a result, we obtained a maximum figure of merit ZT (ZTmax) of ~1.6 at 873 K and an average ZT (ZTave) of ~1.25 at 300 to 873 K in SnS0.91Se0.09 crystals. Our strategy for band manipulation offers a different route for optimizing thermoelectric performance. The high-performance SnS crystals represent an important step toward low-cost, Earth-abundant, and environmentally friendly thermoelectrics.

View Full Text