Probing Majorana neutrinos with double-β decay

See allHide authors and affiliations

Science  27 Sep 2019:
Vol. 365, Issue 6460, pp. 1445-1448
DOI: 10.1126/science.aav8613

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Looking for an exotic decay

Neutrinos—elementary fermionic particles with no electrical charge—defy the standard model of particle physics by having a tiny, but nonzero mass. One explanation for their properties is that they are Majorana fermions, which are particles equal to their antiparticles. If neutrinos were Majorana fermions, a process called neutrinoless double-β decay would become possible: an unstable nucleus could decay by turning two of its neutrons into protons with the emission of two electrons but no antineutrinos. The GERDA Collaboration searched for this decay in a particular isotope of germanium. Housed deep underground to reduce the background signal, the experiment did not detect the elusive process but did place improved boundaries on its half-life.

Science, this issue p. 1445


A discovery that neutrinos are Majorana fermions would have profound implications for particle physics and cosmology. The Majorana character of neutrinos would make possible the neutrinoless double-β (0νββ) decay, a matter-creating process without the balancing emission of antimatter. The GERDA Collaboration searches for the 0νββ decay of 76Ge by operating bare germanium detectors in an active liquid argon shield. With a total exposure of 82.4 kg⋅year, we observe no signal and derive a lower half-life limit of T1/2 > 0.9 × 1026 years (90% C.L.). Our T1/2 sensitivity, assuming no signal, is 1.1 × 1026 years. Combining the latter with those from other 0νββ decay searches yields a sensitivity to the effective Majorana neutrino mass of 0.07 to 0.16 electron volts.

View Full Text