Research Article

Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides

See allHide authors and affiliations

Science  04 Oct 2019:
Vol. 366, Issue 6461, pp. 76-82
DOI: 10.1126/science.aax2747

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Conditions right for making nucleosides

In the absence of biological catalysts and metabolism, can atmospheric and geochemical processes provide the substrates and conditions required for production of biological molecules? Becker et al. devised an abiotic synthetic scheme that allows for accumulation of both purine and pyrimidine nucleoside mono- and diphosphates (see the Perspective by Hud and Fialho). A key starting material for this chemistry, hydroxylamine and/or hydroxylamine disulfonate, can form under plausible early atmospheric conditions. Cycles between wet and dry conditions provide the environments necessary to complete formation of purine and pyrimidine bases essentially in one pot.

Science, this issue p. 76; see also p. 32

Abstract

Theories about the origin of life require chemical pathways that allow formation of life’s key building blocks under prebiotically plausible conditions. Complex molecules like RNA must have originated from small molecules whose reactivity was guided by physico-chemical processes. RNA is constructed from purine and pyrimidine nucleosides, both of which are required for accurate information transfer, and thus Darwinian evolution. Separate pathways to purines and pyrimidines have been reported, but their concurrent syntheses remain a challenge. We report the synthesis of the pyrimidine nucleosides from small molecules and ribose, driven solely by wet-dry cycles. In the presence of phosphate-containing minerals, 5′-mono- and diphosphates also form selectively in one-pot reactions. The pathway is compatible with purine synthesis, allowing the concurrent formation of all Watson-Crick bases.

View Full Text