Report

Spatial control of heavy-fermion superconductivity in CeIrIn5

See allHide authors and affiliations

Science  11 Oct 2019:
Vol. 366, Issue 6462, pp. 221-226
DOI: 10.1126/science.aao6640

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Modulating superconductivity

Strain can have considerable effects on the electronic properties of materials. For instance, the temperature at which a material becomes superconducting—the critical temperature—can be tuned by varying strain. Bachmann et al. used focused ion beam milling to fabricate microstructures of the superconductor CeIrIn5 on sapphire substrate. A difference in the thermal contraction coefficients of the two layers induced nonuniform strain upon cooling of the sample, leading to large gradients of the critical temperature. This approach can be used in other materials and may enable fabrication of superconducting circuitry without physical junctions.

Science, this issue p. 221

Abstract

Although crystals of strongly correlated metals exhibit a diverse set of electronic ground states, few approaches exist for spatially modulating their properties. In this study, we demonstrate disorder-free control, on the micrometer scale, over the superconducting state in samples of the heavy-fermion superconductor CeIrIn5. We pattern crystals by focused ion beam milling to tailor the boundary conditions for the elastic deformation upon thermal contraction during cooling. The resulting nonuniform strain fields induce complex patterns of superconductivity, owing to the strong dependence of the transition temperature on the strength and direction of strain. These results showcase a generic approach to manipulating electronic order on micrometer length scales in strongly correlated matter without compromising the cleanliness, stoichiometry, or mean free path.

View Full Text