Generating large-scale cluster states
The development of a practical quantum computer requires universality, scalability, and fault tolerance. Although much progress is being made in circuit platforms in which arrays of qubits are addressed and manipulated individually, scale-up of such systems is experimentally challenging. Asavanant et al. and Larsen et al. explore an alternative route: measurement-based quantum computation, which is a platform based on the generation of large-scale cluster states. As these are optically prepared and easier to handle (one simply performs local measurements on each individual component of the cluster state), such a platform is readily scalable and fault tolerant. The topology of the cluster state ensures that the approach meets the requirements for quantum computation.
Abstract
Measurement-based quantum computation offers exponential computational speed-up through simple measurements on a large entangled cluster state. We propose and demonstrate a scalable scheme for the generation of photonic cluster states suitable for universal measurement-based quantum computation. We exploit temporal multiplexing of squeezed light modes, delay loops, and beam-splitter transformations to deterministically generate a cylindrical cluster state with a two-dimensional (2D) topological structure as required for universal quantum information processing. The generated state consists of more than 30,000 entangled modes arranged in a cylindrical lattice with 24 modes on the circumference, defining the input register, and a length of 1250 modes, defining the computation depth. Our demonstrated source of two-dimensional cluster states can be combined with quantum error correction to enable fault-tolerant quantum computation.
This is an article distributed under the terms of the Science Journals Default License.