You are currently viewing the summary.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Summary
Conventional rechargeable lithium (Li)–ion batteries generally use graphite as the anode, where Li ions are stored in the layered graphite. However, the use of Li metal as the anode is now being reconsidered. These next-generation battery technologies could potentially double the cell energy of conventional Li-ion batteries (1). Rechargeable Li metal batteries were commercialized more than four decades ago but were in use only briefly because of safety concerns (2). With the advancements of electrolyte (3, 4), electrode architecture (5), and characterization techniques (6) in recent years, a better fundamental understanding of the interfacial reactions during charging and discharging that dictate cell performance has developed and inspired a reevaluation of the use of Li metal anodes in rechargeable batteries.
This is an article distributed under the terms of the Science Journals Default License.