Alternative polyadenylation of Pax3 controls muscle stem cell fate and muscle function

See allHide authors and affiliations

Science  08 Nov 2019:
Vol. 366, Issue 6466, pp. 734-738
DOI: 10.1126/science.aax1694

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Skeletal muscle during homeostasis

Muscle stem cells function in the regeneration of skeletal muscle after injury, but their role in homeostasis is unclear. De Morree et al. show that, in the absence of injury, stem cells in different muscles have different rates of spontaneous activation and fusion, which depend on the level of Pax3 protein (see the Perspective by Xi and Pyle). Regulation of Pax3 protein occurs posttranscriptionally through the small nucleolar RNA U1 and microRNA miR206. This work explains how muscle stem cells are maintained under normal conditions and shows that homeostatic muscle stem cell activation varies in different muscle groups.

Science, this issue p. 734; see also p. 684


Adult stem cells are essential for tissue homeostasis. In skeletal muscle, muscle stem cells (MuSCs) reside in a quiescent state, but little is known about the mechanisms that control homeostatic turnover. Here we show that, in mice, the variation in MuSC activation rate among different muscles (for example, limb versus diaphragm muscles) is determined by the levels of the transcription factor Pax3. We further show that Pax3 levels are controlled by alternative polyadenylation of its transcript, which is regulated by the small nucleolar RNA U1. Isoforms of the Pax3 messenger RNA that differ in their 3′ untranslated regions are differentially susceptible to regulation by microRNA miR206, which results in varying levels of the Pax3 protein in vivo. These findings highlight a previously unrecognized mechanism of the homeostatic regulation of stem cell fate by multiple RNA species.

View Full Text