Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season

See allHide authors and affiliations

Science  17 Jan 2020:
Vol. 367, Issue 6475, pp. 297-300
DOI: 10.1126/science.aay9522

Water reaches Mars' upper atmosphere

Mars once hosted abundant water on its surface but subsequently lost most of it to space. Small amounts of water vapor are still present in the atmosphere, which can escape if they reach sufficiently high altitudes. Fedorova et al. used data from the ExoMars Trace Gas Orbiter spacecraft to determine the distribution of water in Mars' atmosphere and investigate how it varies over seasons. Water vapor is sometimes heavily saturated, and its distribution is affected by the planet's large dust storms. Water can efficiently reach the upper atmosphere when Mars is in the warmest part of its orbit, and this behavior may have controlled the overall rate at which Mars lost its water.

Science, this issue p. 297


The loss of water from Mars to space is thought to result from the transport of water to the upper atmosphere, where it is dissociated to hydrogen and escapes the planet. Recent observations have suggested large, rapid seasonal intrusions of water into the upper atmosphere, boosting the hydrogen abundance. We use the Atmospheric Chemistry Suite on the ExoMars Trace Gas Orbiter to characterize the water distribution by altitude. Water profiles during the 2018–2019 southern spring and summer stormy seasons show that high-altitude water is preferentially supplied close to perihelion, and supersaturation occurs even when clouds are present. This implies that the potential for water to escape from Mars is higher than previously thought.

View Full Text

Stay Connected to Science