Report

An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors

See allHide authors and affiliations

Science  24 Jan 2020:
Vol. 367, Issue 6476, pp. 446-453
DOI: 10.1126/science.aay5967

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

A one-two, CAR-T cell punch

Chimeric antigen receptor (CAR)–T cells have been clinically effective in killing certain hematological malignancies, but achieving long-term patient responses for solid tumors remains a challenge. Reinhard et al. describe a two-part “CARVac” strategy to overcome poor CAR-T cell stimulation and responses in vivo. They introduce the tight junction protein claudin 6 (CLDN6) as a new CAR-T cell target and designed a nanoparticulate RNA vaccine encoding a chimeric receptor directed toward CLDN6. This lipoplex RNA vaccine promotes CLDN6 expression on the surface of dendritic cells, which in turn stimulates and enhances the efficacy of CLDN6-CAR-T cells for improved tumor therapy.

Science, this issue p. 446

Abstract

Chimeric antigen receptor (CAR)–T cells have shown efficacy in patients with B cell malignancies. Yet, their application for solid tumors has challenges that include limited cancer-specific targets and nonpersistence of adoptively transferred CAR-T cells. Here, we introduce the developmentally regulated tight junction protein claudin 6 (CLDN6) as a CAR target in solid tumors and a strategy to overcome inefficient CAR-T cell stimulation in vivo. We demonstrate that a nanoparticulate RNA vaccine, designed for body-wide delivery of the CAR antigen into lymphoid compartments, stimulates adoptively transferred CAR-T cells. Presentation of the natively folded target on resident antigen-presenting cells promotes cognate and selective expansion of CAR-T cells. Improved engraftment of CAR-T cells and regression of large tumors in difficult-to-treat mouse models was achieved at subtherapeutic CAR-T cell doses.

View Full Text

Stay Connected to Science