You are currently viewing the summary.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Summary
Recently, the throughput of single-cell RNA-sequencing (transcriptomics) and genomics technologies has increased more than a 1000-fold. This increase has powered new analyses: Whereas traditional analysis of bulk tissue averages all differences between the diverse cells comprising such samples, single-cell analysis characterizes each individual cell and thus has enabled the discovery and classification of previously unknown cell states. Yet, the nucleic-acid–based technologies are effectively blind to an important group of biological regulators: proteins. Fortunately, emerging mass-spectrometry (MS) technologies that identify and quantify proteins promise to deliver similar gains to single-cell protein analysis. These proteomic technologies will enable high-throughput investigation of key biological questions, such as signaling mechanisms based on protein binding, modifications, and degradation, that have long remained elusive.
This is an article distributed under the terms of the Science Journals Default License.