Helical quantum Hall phase in graphene on SrTiO3

See allHide authors and affiliations

Science  14 Feb 2020:
Vol. 367, Issue 6479, pp. 781-786
DOI: 10.1126/science.aax8201

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Controlling the interactions

Near charge neutrality and subject to perpendicular magnetic fields, graphene is expected to become a ferromagnet with edge states not unlike those in two-dimensional topological insulators. Observing this effect experimentally has proven tricky because very large magnetic fields are needed to overcome the effect of electron-electron interactions, which drive the system to competing states. Instead of amping up the field, Veyrat et al. placed their graphene samples on a substrate made out of strontium titanate, which effectively screened the interactions. Transport measurements confirmed the formation of the characteristic edge states.

Science, this issue p. 781


The ground state of charge-neutral graphene under perpendicular magnetic field was predicted to be a quantum Hall topological insulator with a ferromagnetic order and spin-filtered, helical edge channels. In most experiments, however, an insulating state is observed that is accounted for by lattice-scale interactions that promote a broken-symmetry state with gapped bulk and edge excitations. We tuned the ground state of the graphene zeroth Landau level to the topological phase through a suitable screening of the Coulomb interaction with the high dielectric constant of a strontium titanate (SrTiO3) substrate. Robust helical edge transport emerged at magnetic fields as low as 1 tesla and withstanding temperatures up to 110 kelvin over micron-long distances. This versatile graphene platform may find applications in spintronics and topological quantum computation.

View Full Text

Stay Connected to Science