Circadian rhythms in the absence of the clock gene Bmal1

See allHide authors and affiliations

Science  14 Feb 2020:
Vol. 367, Issue 6479, pp. 800-806
DOI: 10.1126/science.aaw7365

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Redundancy in circadian clocks?

The transcription factor BMAL1 is a core component of the mammalian circadian clock; without it, circadian behaviors are abolished. However, Ray et al. found that in animals lacking BMAL1, peripheral tissues synchronized with a brief pulse of the glucocorticoid hormone dexamethasone appear to retain a 24-hour pacemaker that sustains rhythmic gene expression, protein abundance, and protein phosphorylation in excised liver cells and fibroblasts (see the Perspective by Brown and Sato). These oscillations persisted in the absence of cues from changes in light or temperature. The results raise intriguing questions about the possible nature of the oscillator that maintains the observed rhythms.

Science, this issue p. 800; see also p. 740


Circadian (~24 hour) clocks have a fundamental role in regulating daily physiology. The transcription factor BMAL1 is a principal driver of a molecular clock in mammals. Bmal1 deletion abolishes 24-hour activity patterning, one measure of clock output. We determined whether Bmal1 function is necessary for daily molecular oscillations in skin fibroblasts and liver slices. Unexpectedly, in Bmal1 knockout mice, both tissues exhibited 24-hour oscillations of the transcriptome, proteome, and phosphoproteome over 2 to 3 days in the absence of any exogenous drivers such as daily light or temperature cycles. This demonstrates a competent 24-hour molecular pacemaker in Bmal1 knockouts. We suggest that such oscillations might be underpinned by transcriptional regulation by the recruitment of ETS family transcription factors, and nontranscriptionally by co-opting redox oscillations.

View Full Text

Stay Connected to Science