Structural basis of second-generation HIV integrase inhibitor action and viral resistance

See allHide authors and affiliations

Science  14 Feb 2020:
Vol. 367, Issue 6479, pp. 806-810
DOI: 10.1126/science.aay4919

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Strengths and weaknesses of an HIV drug

Retroviruses replicate by inserting a copy of their RNA, which has been reverse transcribed into DNA, into the host genome. This process involves the intasome, a nucleoprotein complex comprising copies of the viral integrase bound at the ends of the viral DNA. HIV integrase strand-transfer inhibitors (INSTIs) stop HIV from replicating by blocking the viral integrase and are widely used in HIV treatment. Cook et al. describe structures of second-generation inhibitors bound to the simian immunodeficiency virus (SIV) intasome and to an intasome with integrase mutations known to cause drug resistance. Passos et al. describe the structures of the HIV intasome bound to a second-generation inhibitor and to developmental compounds that are promising drug leads. These structures show how mutations can cause subtle changes in the active site that affect drug binding, show the basis for the higher activity of later-generation inhibitors, and may guide development of better drugs.

Science, this issue p. 806, p. 810


Although second-generation HIV integrase strand-transfer inhibitors (INSTIs) are prescribed throughout the world, the mechanistic basis for the superiority of these drugs is poorly understood. We used single-particle cryo–electron microscopy to visualize the mode of action of the advanced INSTIs dolutegravir and bictegravir at near-atomic resolution. Glutamine-148→histidine (Q148H) and glycine-140→serine (G140S) amino acid substitutions in integrase that result in clinical INSTI failure perturb optimal magnesium ion coordination in the enzyme active site. The expanded chemical scaffolds of second-generation compounds mediate interactions with the protein backbone that are critical for antagonizing viruses containing the Q148H and G140S mutations. Our results reveal that binding to magnesium ions underpins a fundamental weakness of the INSTI pharmacophore that is exploited by the virus to engender resistance and provide a structural framework for the development of this class of anti-HIV/AIDS therapeutics.

View Full Text

Stay Connected to Science