Research Article

Molecular mechanism of biased signaling in a prototypical G protein–coupled receptor

See allHide authors and affiliations

Science  21 Feb 2020:
Vol. 367, Issue 6480, pp. 881-887
DOI: 10.1126/science.aaz0326

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Choosing the drug to fit the protein

Many approved drugs bind to G protein–coupled receptors (GPCRs). A challenge in targeting GPCRs is that different ligands preferentially activate different signaling pathways. Two papers show how biased signaling arises for the angiotensin II type 1 receptor that couples to two signaling partners (G proteins and arrestins). Suomivuori et al. used large-scale atomistic simulations to show that coupling to the two pathways is through two distinct GPCR conformations and that extracellular ligands favor one or the other conformation. Wingler et al. present crystal structures of the same receptor bound to ligands with different bias profiles. These structures show conformational changes in and around the binding pocket that match those observed in simulations. This work could provide a framework for the rational design of drugs that are more effective and have fewer side effects.

Science, this issue p. 881, p. 888

Abstract

Biased signaling, in which different ligands that bind to the same G protein–coupled receptor preferentially trigger distinct signaling pathways, holds great promise for the design of safer and more effective drugs. Its structural mechanism remains unclear, however, hampering efforts to design drugs with desired signaling profiles. Here, we use extensive atomic-level molecular dynamics simulations to determine how arrestin bias and G protein bias arise at the angiotensin II type 1 receptor. The receptor adopts two major signaling conformations, one of which couples almost exclusively to arrestin, whereas the other also couples effectively to a G protein. A long-range allosteric network allows ligands in the extracellular binding pocket to favor either of the two intracellular conformations. Guided by this computationally determined mechanism, we designed ligands with desired signaling profiles.

View Full Text

Stay Connected to Science


Editor's Blog