Report

Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR

See allHide authors and affiliations

Science  21 Feb 2020:
Vol. 367, Issue 6480, pp. 888-892
DOI: 10.1126/science.aay9813

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Choosing the drug to fit the protein

Many approved drugs bind to G protein–coupled receptors (GPCRs). A challenge in targeting GPCRs is that different ligands preferentially activate different signaling pathways. Two papers show how biased signaling arises for the angiotensin II type 1 receptor that couples to two signaling partners (G proteins and arrestins). Suomivuori et al. used large-scale atomistic simulations to show that coupling to the two pathways is through two distinct GPCR conformations and that extracellular ligands favor one or the other conformation. Wingler et al. present crystal structures of the same receptor bound to ligands with different bias profiles. These structures show conformational changes in and around the binding pocket that match those observed in simulations. This work could provide a framework for the rational design of drugs that are more effective and have fewer side effects.

Science, this issue p. 881, p. 888

Abstract

Biased agonists of G protein–coupled receptors (GPCRs) preferentially activate a subset of downstream signaling pathways. In this work, we present crystal structures of angiotensin II type 1 receptor (AT1R) (2.7 to 2.9 angstroms) bound to three ligands with divergent bias profiles: the balanced endogenous agonist angiotensin II (AngII) and two strongly β-arrestin–biased analogs. Compared with other ligands, AngII promotes more-substantial rearrangements not only at the bottom of the ligand-binding pocket but also in a key polar network in the receptor core, which forms a sodium-binding site in most GPCRs. Divergences from the family consensus in this region, which appears to act as a biased signaling switch, may predispose the AT1R and certain other GPCRs (such as chemokine receptors) to adopt conformations that are capable of activating β-arrestin but not heterotrimeric Gq protein signaling.

View Full Text

Stay Connected to Science