Report

Genetically targeted chemical assembly of functional materials in living cells, tissues, and animals

See allHide authors and affiliations

Science  20 Mar 2020:
Vol. 367, Issue 6484, pp. 1372-1376
DOI: 10.1126/science.aay4866

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

From genetics to material to behavior

Introducing new genes into an organism can endow new biochemical functions or change the patterns of existing functions, but extending these manipulations to structure at the tissue level is challenging. Combining genetic engineering and polymer chemistry, Liu et al. directly leveraged complex cellular architectures of living organisms to synthesize, fabricate, and assemble bioelectronic materials (see the Perspective by Otto and Schmidt). An engineered enzyme expressed in genetically targeted neurons synthesized conductive polymers in tissues of freely moving animals. These polymers enabled modulation of membrane properties in specific neuron populations and manipulation of behavior in living animals.

Science, this issue p. 1372; see also p. 1303

Abstract

The structural and functional complexity of multicellular biological systems, such as the brain, are beyond the reach of human design or assembly capabilities. Cells in living organisms may be recruited to construct synthetic materials or structures if treated as anatomically defined compartments for specific chemistry, harnessing biology for the assembly of complex functional structures. By integrating engineered-enzyme targeting and polymer chemistry, we genetically instructed specific living neurons to guide chemical synthesis of electrically functional (conductive or insulating) polymers at the plasma membrane. Electrophysiological and behavioral analyses confirmed that rationally designed, genetically targeted assembly of functional polymers not only preserved neuronal viability but also achieved remodeling of membrane properties and modulated cell type–specific behaviors in freely moving animals. This approach may enable the creation of diverse, complex, and functional structures and materials within living systems.

View Full Text

Stay Connected to Science


Editor's Blog