A sustainable wood biorefinery for low–carbon footprint chemicals production

See allHide authors and affiliations

Science  20 Mar 2020:
Vol. 367, Issue 6484, pp. 1385-1390
DOI: 10.1126/science.aau1567

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Every twig and splinter used

Plant-based production of commodity chemicals faces steep competition from fossil resources, which are often cheaper and easier to partition. Sustainable use of renewable resources requires strategies for converting complex and recalcitrant biomolecules into streams of chemicals with extraordinary efficiency. Liao et al. developed a biorefinery concept in which wood is eventually fully converted into useful chemicals: phenol, propylene, pulp amenable to ethanol production, and phenolic oligomers that can be incorporated into ink production (see the Perspective by Zhang). A life-cycle assessment and techno-economic analysis highlight the efficiency of the process and reveal the potential for such biorefinery strategies to contribute to sustainable chemicals markets.

Science, this issue p. 1385; see also p. 1305


The profitability and sustainability of future biorefineries are dependent on efficient feedstock use. Therefore, it is essential to valorize lignin when using wood. We have developed an integrated biorefinery that converts 78 weight % (wt %) of birch into xylochemicals. Reductive catalytic fractionation of the wood produces a carbohydrate pulp amenable to bioethanol production and a lignin oil. After extraction of the lignin oil, the crude, unseparated mixture of phenolic monomers is catalytically funneled into 20 wt % of phenol and 9 wt % of propylene (on the basis of lignin weight) by gas-phase hydroprocessing and dealkylation; the residual phenolic oligomers (30 wt %) are used in printing ink as replacements for controversial para-nonylphenol. A techno-economic analysis predicts an economically competitive production process, and a life-cycle assessment estimates a lower carbon dioxide footprint relative to that of fossil-based production.

View Full Text

Stay Connected to Science