Research Article

Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2

See allHide authors and affiliations

Science  27 Mar 2020:
Vol. 367, Issue 6485, pp. 1444-1448
DOI: 10.1126/science.abb2762

How SARS-CoV-2 binds to human cells

Scientists are racing to learn the secrets of severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2), which is the cause of the pandemic disease COVID-19. The first step in viral entry is the binding of the viral trimeric spike protein to the human receptor angiotensin-converting enzyme 2 (ACE2). Yan et al. present the structure of human ACE2 in complex with a membrane protein that it chaperones, B0AT1. In the context of this complex, ACE2 is a dimer. A further structure shows how the receptor binding domain of SARS-CoV-2 interacts with ACE2 and suggests that it is possible that two trimeric spike proteins bind to an ACE2 dimer. The structures provide a basis for the development of therapeutics targeting this crucial interaction.

Science, this issue p. 1444

View Full Text

Stay Connected to Science


Editor's Blog