Research Article

Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites

See allHide authors and affiliations

Science  10 Apr 2020:
Vol. 368, Issue 6487, pp. 155-160
DOI: 10.1126/science.aba3433

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Engineering perovskites with anions

The bandgap of the perovskite top layer in tandem silicon solar cells must be tuned to ∼1.7 electron volts. Usually, the cation composition is varied because the bromine-rich anion compositions with wide bandgaps are structurally unstable. Kim et al. show that by using phenethylammonium as a two-dimensional additive, along with iodine and thiocyanate, bromine-rich perovskite films can be stabilized. A tandem silicon cell delivered >26% certified power conversion efficiency, and a perovskite device maintained 80% of its initial power conversion efficiency of >20% after 1000 hours under illumination.

Science, this issue p. 155


Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells.

View Full Text

Stay Connected to Science