Report

Simultaneous observation of nuclear and electronic dynamics by ultrafast electron diffraction

See allHide authors and affiliations

Science  22 May 2020:
Vol. 368, Issue 6493, pp. 885-889
DOI: 10.1126/science.abb2235

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Electronic and nuclear dynamics in one

Because of the complex, ultrafast interplay between nuclear and electronic degrees of freedom, probing both nuclear and electronic dynamics in excited electronic states within a single time-resolved experiment is a great challenge. Yang et al. used ultrafast electron diffraction in combination with ab initio nonadiabatic molecular dynamics and diffraction simulations to study the relaxation dynamics of isolated pyridine molecules after photoexcitation to the S1 state (see the Perspective by Domcke and Sobolewski). They showed that electronic state evolution and molecular structural changes can be recorded simultaneously and independently by tracing a transient signal in small-angle inelastic scattering and large-angle elastic diffraction, respectively.

Science, this issue p. 885; see also p. 820

Abstract

Simultaneous observation of nuclear and electronic motion is crucial for a complete understanding of molecular dynamics in excited electronic states. It is challenging for a single experiment to independently follow both electronic and nuclear dynamics at the same time. Here we show that ultrafast electron diffraction can be used to simultaneously record both electronic and nuclear dynamics in isolated pyridine molecules, naturally disentangling the two components. Electronic state changes (S1→S0 internal conversion) were reflected by a strong transient signal in small-angle inelastic scattering, and nuclear structural changes (ring puckering) were monitored by large-angle elastic diffraction. Supported by ab initio nonadiabatic molecular dynamics and diffraction simulations, our experiment provides a clear view of the interplay between electronic and nuclear dynamics of the photoexcited pyridine molecule.

View Full Text

Stay Connected to Science