Research Article

Landscape-scale forest loss as a catalyst of population and biodiversity change

See allHide authors and affiliations

Science  19 Jun 2020:
Vol. 368, Issue 6497, pp. 1341-1347
DOI: 10.1126/science.aba1289

Land-use change and forest biodiversity

Land-use change by humans, particularly forest loss, is influencing Earth's biodiversity through time. To assess the influence of forest loss on population and biodiversity change, Daskalova et al. integrated data from more than 6000 time series of species' abundance, richness, and composition in ecological assemblages around the world. Forest loss leads to both positive and negative responses of populations and biodiversity, and the temporal lags in population and biodiversity change after forest loss can extend up to half a century. Land-use change precipitates divergent population and biodiversity change. This analysis has consequences for projections of human impact, ongoing conservation, and assessments of biodiversity change.

Science, this issue p. 1341


Global biodiversity assessments have highlighted land-use change as a key driver of biodiversity change. However, there is little empirical evidence of how habitat transformations such as forest loss and gain are reshaping biodiversity over time. We quantified how change in forest cover has influenced temporal shifts in populations and ecological assemblages from 6090 globally distributed time series across six taxonomic groups. We found that local-scale increases and decreases in abundance, species richness, and temporal species replacement (turnover) were intensified by as much as 48% after forest loss. Temporal lags in population- and assemblage-level shifts after forest loss extended up to 50 years and increased with species’ generation time. Our findings that forest loss catalyzes population and biodiversity change emphasize the complex biotic consequences of land-use change.

View Full Text

Stay Connected to Science