Report

Micelle-directed chiral seeded growth on anisotropic gold nanocrystals

See allHide authors and affiliations

Science  26 Jun 2020:
Vol. 368, Issue 6498, pp. 1472-1477
DOI: 10.1126/science.aba0980

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Groovy chiral gold particles

Although plasmonic optical activity can arise from chiral assemblies of gold and silver nanoparticles, there are few examples of gold nanoparticles with intrinsic chirality and high optical activity. González-Rubio et al. show that morphological chirality can be induced during the seeded growth of gold nanoparticles, particularly for highly anisotropic nanorods. Chiral additives as cosurfactants formed helical micelles that directed the seeded growth to create grooves that maintained a chiral morphology. The resulting particles displayed high-intensity circular dichroism with anisotropy factors near 0.2 at near-infrared wavelengths.

Science, this issue p. 1472

Abstract

Surfactant-assisted seeded growth of metal nanoparticles (NPs) can be engineered to produce anisotropic gold nanocrystals with high chiroptical activity through the templating effect of chiral micelles formed in the presence of dissymmetric cosurfactants. Mixed micelles adsorb on gold nanorods, forming quasihelical patterns that direct seeded growth into NPs with pronounced morphological and optical handedness. Sharp chiral wrinkles lead to chiral plasmon modes with high dissymmetry factors (~0.20). Through variation of the dimensions of chiral wrinkles, the chiroptical properties can be tuned within the visible and near-infrared electromagnetic spectrum. The micelle-directed mechanism allows extension to other systems, such as the seeded growth of chiral platinum shells on gold nanorods. This approach provides a reproducible, simple, and scalable method toward the fabrication of NPs with high chiral optical activity.

View Full Text

Stay Connected to Science