Report

A piperidinium salt stabilizes efficient metal-halide perovskite solar cells

See allHide authors and affiliations

Science  03 Jul 2020:
Vol. 369, Issue 6499, pp. 96-102
DOI: 10.1126/science.aba1628

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Stable perovskites with ionic salts

Ionic liquids have been shown to stabilize organic-inorganic perovskite solar cells with metal oxide carrier-transport layers, but they are incompatible with more readily processible organic analogs. Lin et al. found that an ionic solid, a piperidinium salt, enhanced the efficiency of positive-intrinsic-negative layered perovskite solar cells with organic electron and hole extraction layers. Aggressive aging testing showed that this additive retarded segregation into impurity phases and pinhole formation in the perovskite layer.

Science, this issue p. 96

Abstract

Longevity has been a long-standing concern for hybrid perovskite photovoltaics. We demonstrate high-resilience positive-intrinsic-negative perovskite solar cells by incorporating a piperidinium-based ionic compound into the formamidinium-cesium lead-trihalide perovskite absorber. With the bandgap tuned to be well suited for perovskite-on-silicon tandem cells, this piperidinium additive enhances the open-circuit voltage and cell efficiency. This additive also retards compositional segregation into impurity phases and pinhole formation in the perovskite absorber layer during aggressive aging. Under full-spectrum simulated sunlight in ambient atmosphere, our unencapsulated and encapsulated cells retain 80 and 95% of their peak and post-burn-in efficiencies for 1010 and 1200 hours at 60° and 85°C, respectively. Our analysis reveals detailed degradation routes that contribute to the failure of aged cells.

View Full Text

Stay Connected to Science