Report

Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces

See allHide authors and affiliations

Science  24 Jul 2020:
Vol. 369, Issue 6502, pp. 427-432
DOI: 10.1126/science.abb6830

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Strength through disorder

Jet turbine blades and other objects with ultrahigh strength at high temperatures are made of special alloys that are often grown as costly single crystals to help avoid failure. Yang et al. discovered that adding a small amount of boron in a nickel-cobalt-iron-aluminum-titanium alloy creates an ultrahigh-strength material. Critically, the alloy has a nanoscale-disordered interface in between crystal grains that substantially improves the ductility while preventing high-temperature grain coarsening. This alloy design creates attractive high-temperature properties for various applications.

Science, this issue p. 427

Abstract

Alloys that have high strengths at high temperatures are crucial for a variety of important industries including aerospace. Alloys with ordered superlattice structures are attractive for this purpose but generally suffer from poor ductility and rapid grain coarsening. We discovered that nanoscale disordered interfaces can effectively overcome these problems. Interfacial disordering is driven by multielement cosegregation that creates a distinctive nanolayer between adjacent micrometer-scale superlattice grains. This nanolayer acts as a sustainable ductilizing source, which prevents brittle intergranular fractures by enhancing dislocation mobilities. Our superlattice materials have ultrahigh strengths of 1.6 gigapascals with tensile ductilities of 25% at ambient temperature. Simultaneously, we achieved negligible grain coarsening with exceptional softening resistance at elevated temperatures. Designing similar nanolayers may open a pathway for further optimization of alloy properties.

View Full Text

Stay Connected to Science