Research Article

Architecture of a catalytically active homotrimeric plant cellulose synthase complex

See allHide authors and affiliations

Science  28 Aug 2020:
Vol. 369, Issue 6507, pp. 1089-1094
DOI: 10.1126/science.abb2978

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Plant cell wall construction crew

Plants produce a complex cell wall in which cellulose, a glucose polymer, is a major component. Cellulose fibers are formed from close-packed single chains of cellulose that have been proposed to be formed by multimeric complexes (18 or more subunits) of the enzyme cellulose synthase, which exists in several isoforms. Purushotham et al. determined a cryo–electron microscopy structure of a trimer of a single isoform of cellulose synthase. A large channel forms a path for cellulose chains through the membrane-embedded complex. The structure also reveals oligomeric interfaces and provides a framework for modeling the larger complexes seen in plant membranes. The close arrangement of exit sites for nascent glycan chains is consistent with the enzyme complex playing a role in directing cellulose microfibril formation.

Science, this issue p. 1089

Abstract

Cellulose is an essential plant cell wall component and represents the most abundant biopolymer on Earth. Supramolecular plant cellulose synthase complexes organize multiple linear glucose polymers into microfibrils as load-bearing wall components. We determined the structure of a poplar cellulose synthase CesA homotrimer that suggests a molecular basis for cellulose microfibril formation. This complex, stabilized by cytosolic plant-conserved regions and helical exchange within the transmembrane segments, forms three channels occupied by nascent cellulose polymers. Secretion steers the polymers toward a common exit point, which could facilitate protofibril formation. CesA’s N-terminal domains assemble into a cytosolic stalk that interacts with a microtubule-tethering protein and may thus be involved in CesA localization. Our data suggest how cellulose synthase complexes assemble and provide the molecular basis for plant cell wall engineering.

View Full Text

Stay Connected to Science