Species richness and redundancy promote persistence of exploited mutualisms in yeast

See allHide authors and affiliations

Science  16 Oct 2020:
Vol. 370, Issue 6514, pp. 346-350
DOI: 10.1126/science.abb6703

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Species richness maintains mutualisms

Mutualistic communities of species that benefit each other are ubiquitous in ecosystems and are important for ecosystem functioning. However, the relationship between the persistence of mutualisms and species richness has remained unclear. Vidal et al. used a synthetic mutualism in brewer's yeast to experimentally test whether species richness buffers mutualistic communities against exploitation by species that do not provide benefits in return. They showed that richer mutualist communities survive exploitation more often than pairwise mutualisms and that higher species richness and functional redundancy allow mutualist communities to persist in the presence of exploiters. These results provide experimental support for the hypothesis that species richness is necessary for the function and maintenance of mutualistic communities.

Science, this issue p. 346


Mutualisms, or reciprocally beneficial interspecific interactions, constitute the foundation of many ecological communities and agricultural systems. Mutualisms come in different forms, from pairwise interactions to extremely diverse communities, and they are continually challenged with exploitation by nonmutualistic community members (exploiters). Thus, understanding how mutualisms persist remains an essential question in ecology. Theory suggests that high species richness and functional redundancy could promote mutualism persistence in complex mutualistic communities. Using a yeast system (Saccharomyces cerevisiae), we experimentally show that communities with the greatest mutualist richness and functional redundancy are nearly two times more likely to survive exploitation than are simple communities. Persistence increased because diverse communities were better able to mitigate the negative effects of competition with exploiters. Thus, large mutualistic networks may be inherently buffered from exploitation.

View Full Text

Stay Connected to Science