You are currently viewing the summary.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Summary
Electronic skins (e-skins) are flexible electronic devices that emulate properties of human skin, such as high stretchability and toughness, perception of stimuli, and self-healing. These devices can serve as an alternative to natural human skin or as a human-machine interface (1–3). For on-skin applications, an e-skin should be multimodal (sense more than one external stimulus), have a high density of sensors, and have low interference with natural skin sensation. On pages 961 and 966 of this issue, You et al. (4) and Lee et al. (5), respectively, report advances of skin-like electronic devices. You et al. present a stretchable multimodal ionic-electronic (IE) conductor–based “IEM-skin” that can measure both strain and temperature inputs without signal interference. Lee et al. describe an ultrathin capacitive pressure sensor based on conductive and dielectric nanomesh structures that can be attached to a human fingertip for grip pressure and force measurement without affecting natural skin sensation.
This is an article distributed under the terms of the Science Journals Default License.