Report

Tissue topography steers migrating Drosophila border cells

See allHide authors and affiliations

Science  20 Nov 2020:
Vol. 370, Issue 6519, pp. 987-990
DOI: 10.1126/science.aaz4741

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Cells and the path of least resistance

For processes encompassing proper embryonic development, adult homeostasis, tumor cell dissemination, and immunity, certain cells must translocate from their site of origin. Migrating cells navigate physical features of their microenvironment; however, the in vivo importance of tissue topography for pathfinding is mostly unknown. Studying fruit flies, Dai et al. used border cells within the ovarian egg chamber to study path selection. Live imaging, genetics, mathematical modeling, and simulations showed that tissue microtopography provides an energetically favorable path of least resistance, whereas chemoattractants supply orthogonal guidance information and cell-cell adhesion contributes traction. The results provide insight into how cells integrate and prioritize topographical, adhesive, and chemoattractant cues to choose one path among many.

Science, this issue p. 987

Abstract

Moving cells can sense and respond to physical features of the microenvironment; however, in vivo, the significance of tissue topography is mostly unknown. Here, we used Drosophila border cells, an established model for in vivo cell migration, to study how chemical and physical information influences path selection. Although chemical cues were thought to be sufficient, live imaging, genetics, modeling, and simulations show that microtopography is also important. Chemoattractants promote predominantly posterior movement, whereas tissue architecture presents orthogonal information, a path of least resistance concentrated near the center of the egg chamber. E-cadherin supplies a permissive haptotactic cue. Our results provide insight into how cells integrate and prioritize topographical, adhesive, and chemoattractant cues to choose one path among many.

View Full Text

Stay Connected to Science