Report

Enhanced Zika virus susceptibility of globally invasive Aedes aegypti populations

See allHide authors and affiliations

Science  20 Nov 2020:
Vol. 370, Issue 6519, pp. 991-996
DOI: 10.1126/science.abd3663

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Domesticating Zika virus

Why hasn't Zika virus (ZIKV) disease caused as much devastation in Africa, its continent of origin, as it has in the Americas? Outside of Africa, this flavivirus is transmitted by a ubiquitous mosquito subspecies, Aedes aegypti aegypti, which emerged from the African forerunner subspecies A. aegypti formosus and acquired a preference for human blood and a peridomestic lifestyle. Now, this subspecies colonizes many intertropical cities, aided by climate change and human trash. Aubry et al. tested 14 laboratory mosquito colonies for their relative susceptibility to ZIKV. Quantitative trait locus mapping showed differences on chromosome 2 between mosquitoes from Gabon and Guadeloupe. Mouse infection experiments revealed that African mosquitoes transmitted a smaller virus inoculum than the South American insects. Increased susceptibility coupled with the ability of A. aegypti aegypti to breed in any discarded object containing water has amplified the problematic nature of this virus as it has circumnavigated the world.

Science, this issue p. 991

Abstract

The drivers and patterns of zoonotic virus emergence in the human population are poorly understood. The mosquito Aedes aegypti is a major arbovirus vector native to Africa that invaded most of the world’s tropical belt over the past four centuries, after the evolution of a “domestic” form that specialized in biting humans and breeding in water storage containers. Here, we show that human specialization and subsequent spread of A. aegypti out of Africa were accompanied by an increase in its intrinsic ability to acquire and transmit the emerging human pathogen Zika virus. Thus, the recent evolution and global expansion of A. aegypti promoted arbovirus emergence not solely through increased vector–host contact but also as a result of enhanced vector susceptibility.

View Full Text

Stay Connected to Science