Report

Precise T cell recognition programs designed by transcriptionally linking multiple receptors

See allHide authors and affiliations

Science  27 Nov 2020:
Vol. 370, Issue 6520, pp. 1099-1104
DOI: 10.1126/science.abc6270

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

A logic to cell-cell recognition

There has been exciting progress in the field of cancer immunotherapy, which harnesses a patient's own immune system to kill cancer cells. However, achieving precise recognition of cancer cells remains challenging. Cells engineered with synthetic Notch (synNotch) receptors bind to specific antigens, and binding induces the expression of defined genes. Williams et al. used synNotch modules as transcriptional connectors that daisy-chain together multiple receptors. They engineered T cells that can recognize up to three target antigens expressed on or inside cancer cells and integrated these inputs to achieve NOT, AND, and OR logic. The engineered cells achieved precise recognition of targeted cancer cells.

Science, this issue p. 1099

Abstract

Living cells often identify their correct partner or target cells by integrating information from multiple receptors, achieving levels of recognition that are difficult to obtain with individual molecular interactions. In this study, we engineered a diverse library of multireceptor cell-cell recognition circuits by using synthetic Notch receptors to transcriptionally interconnect multiple molecular recognition events. These synthetic circuits allow engineered T cells to integrate extra- and intracellular antigen recognition, are robust to heterogeneity, and achieve precise recognition by integrating up to three different antigens with positive or negative logic. A three-antigen AND gate composed of three sequentially linked receptors shows selectivity in vivo, clearing three-antigen tumors while ignoring related two-antigen tumors. Daisy-chaining multiple molecular recognition events together in synthetic circuits provides a powerful way to engineer cellular-level recognition.

View Full Text

Stay Connected to Science