Report

Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors

See allHide authors and affiliations

Science  04 Dec 2020:
Vol. 370, Issue 6521, pp. 1199-1204
DOI: 10.1126/science.aba1029

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Probing the dark state

Excitons, electron-hole pairs held together by Coulomb attraction, can be generated in semiconductors under excitation and greatly influence the material's optoelectronic properties. Although bright excitons are optically active, their dark-state cousins have been more difficult to detect. They do, however, affect the optoelectronic properties through their interaction with light and bright excitons. Madéo et al. developed a pump-probe photoemission technique that is used reveal the spatial, temporal, and spectral dynamics of excitons (see the Perspective by Na and Ye). Demonstrated in two-dimensional monolayer films of tungsten diselenide, the technique could also be applicable to other semiconductor systems hosting excitonic excitations.

Science, this issue p. 1199; see also p. 1166

Abstract

Resolving momentum degrees of freedom of excitons, which are electron-hole pairs bound by the Coulomb attraction in a photoexcited semiconductor, has remained an elusive goal for decades. In atomically thin semiconductors, such a capability could probe the momentum-forbidden dark excitons, which critically affect proposed opto-electronic technologies but are not directly accessible using optical techniques. Here, we probed the momentum state of excitons in a tungsten diselenide monolayer by photoemitting their constituent electrons and resolving them in time, momentum, and energy. We obtained a direct visual of the momentum-forbidden dark excitons and studied their properties, including their near degeneracy with bright excitons and their formation pathways in the energy-momentum landscape. These dark excitons dominated the excited-state distribution, a surprising finding that highlights their importance in atomically thin semiconductors.

View Full Text

Stay Connected to Science