Research Article

A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis

See allHide authors and affiliations

Science  08 Jan 2021:
Vol. 371, Issue 6525, pp. 145-153
DOI: 10.1126/science.aay3638

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Precision therapy for immune tolerance

Autoimmune diseases, such as multiple sclerosis (MS), result from a breach of immunological self-tolerance and tissue damage by autoreactive T lymphocytes. Current treatments can cause systemic immune suppression and side effects such as increased risk of infections. Krienke et al. designed a messenger RNA vaccine strategy that lacks adjuvant activity and delivers MS autoantigens into lymphoid dendritic cells. This approach expands a distinct type of antigen-specific effector regulatory T cell that suppresses autoreactivity against targeted autoantigens and promotes bystander suppression of autoreactive T cells against other myelin-specific autoantigens. In mouse models of MS, the vaccine delayed the onset and reduced the severity of established disease without showing overt symptoms of general immune suppression.

Science, this issue p. 145

Abstract

The ability to control autoreactive T cells without inducing systemic immune suppression is the major goal for treatment of autoimmune diseases. The key challenge is the safe and efficient delivery of pharmaceutically well-defined antigens in a noninflammatory context. Here, we show that systemic delivery of nanoparticle-formulated 1 methylpseudouridine-modified messenger RNA (m1Ψ mRNA) coding for disease-related autoantigens results in antigen presentation on splenic CD11c+ antigen-presenting cells in the absence of costimulatory signals. In several mouse models of multiple sclerosis, the disease is suppressed by treatment with such m1Ψ mRNA. The treatment effect is associated with a reduction of effector T cells and the development of regulatory T cell (Treg cell) populations. Notably, these Treg cells execute strong bystander immunosuppression and thus improve disease induced by cognate and noncognate autoantigens.

View Full Text

Stay Connected to Science