You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
The nature of short hydrogen bonds
Hydrogen bonding (H-bonding) unquestionably plays an important role in chemical and biological systems and is responsible for some of their unusual properties. Strong, short H-bonds constitute a separate class that, owing to their elusive characterization, has remained a point of contention over the past several decades. Using femtosecond two-dimensional infrared spectroscopy in conjunction with quantum chemical calculations, Dereka et al. demonstrate a powerful way to investigate the nature of short H-bonding (see the Perspective by Bonn and Hunger). Their quantitative characterization of multiple coupled motions in the model system of bifluoride anion [F-H-F]− in aqueous solution reveals several distinctive features of a crossover from conventional to short, strong H-bonding.
Abstract
Hydrogen bonds (H-bonds) can be interpreted as a classical electrostatic interaction or as a covalent chemical bond if the interaction is strong enough. As a result, short strong H-bonds exist at an intersection between qualitatively different bonding descriptions, with few experimental methods to understand this dichotomy. The [F-H-F]− ion represents a bare short H-bond, whose distinctive vibrational potential in water is revealed with femtosecond two-dimensional infrared spectroscopy. It shows the superharmonic behavior of the proton motion, which is strongly coupled to the donor-acceptor stretching and disappears on H-bond bending. In combination with high-level quantum-chemical calculations, we demonstrate a distinct crossover in spectroscopic properties from conventional to short strong H-bonds, which identify where hydrogen bonding ends and chemical bonding begins.
This is an article distributed under the terms of the Science Journals Default License.