You are currently viewing the editor's summary.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Where they can't breathe
Climate warming is causing the expansion of marine oxygen-deficient zones, which are regions in which dissolved oxygen concentrations are so low that many marine animals cannot survive. This phenomenon also might affect the global cycles of carbon, sulfur, nitrogen, and trace metals in the oceans. Raven et al. show how ocean anoxia affects microbial sulfur processing in sinking marine particles. They observed cryptic microbial sulfate reduction, which forms organic sulfur that is resistant to acid hydrolysis, a process that could enhance carbon preservation in sediments underlying oxygen-deficient water columns. This may help explain some of the more extreme episodes of organic carbon preservation associated with marine anoxia in Earth's history.
Science, this issue p. 178
This is an article distributed under the terms of the Science Journals Default License.