You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Two antibodies against flaviviruses
Flaviviruses are a group of RNA viruses that include the human pathogens dengue virus, Zika virus, and West Nile virus. The envelope protein (E) on the virus surface has been the target of vaccine development, but problems have arisen with antibodies against E, leading to enhanced infection. Now, Modhiran et al. and Biering et al. describe two different antibodies that bind to the flavivirus NS1 protein and prevent it from disrupting epithelial cells, which is associated with severe disease. Both antibodies cross-react with multiple flavivirus NS1 proteins. The antibodies reduce viremia and increase survival in mouse models of flavivirus disease. Both papers include structures of NS1 bound to an antibody, which give insight into the protective mechanism.
Abstract
Medically important flaviviruses cause diverse disease pathologies and collectively are responsible for a major global disease burden. A contributing factor to pathogenesis is secreted flavivirus nonstructural protein 1 (NS1). Despite demonstrated protection by NS1-specific antibodies against lethal flavivirus challenge, the structural and mechanistic basis remains unknown. Here, we present three crystal structures of full-length dengue virus NS1 complexed with a flavivirus–cross-reactive, NS1-specific monoclonal antibody, 2B7, at resolutions between 2.89 and 3.96 angstroms. These structures reveal a protective mechanism by which two domains of NS1 are antagonized simultaneously. The NS1 wing domain mediates cell binding, whereas the β-ladder triggers downstream events, both of which are required for dengue, Zika, and West Nile virus NS1–mediated endothelial dysfunction. These observations provide a mechanistic explanation for 2B7 protection against NS1-induced pathology and demonstrate the potential of one antibody to treat infections by multiple flaviviruses.
This is an article distributed under the terms of the Science Journals Default License.