You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
A tight couple makes messenger RNAs
Gene expression in eukaryotes first requires transcription of DNA to an RNA copy and then splicing to form the final, processed messenger RNA (mRNA). Zhang et al. investigated how gene transcription and RNA splicing are physically coupled. Using cryo–electron microscopy, they resolved the molecular structure of a complex of the transcription enzyme RNA polymerase II with part of the splicing machinery, the U1 small nuclear ribonucleoprotein particle. The results provide important details for our understanding of coupled mRNA production.
Science, this issue p. 305
Abstract
To initiate cotranscriptional splicing, RNA polymerase II (Pol II) recruits the U1 small nuclear ribonucleoprotein particle (U1 snRNP) to nascent precursor messenger RNA (pre-mRNA). Here, we report the cryo–electron microscopy structure of a mammalian transcribing Pol II–U1 snRNP complex. The structure reveals that Pol II and U1 snRNP interact directly. This interaction positions the pre-mRNA 5′ splice site near the RNA exit site of Pol II. Extension of pre-mRNA retains the 5′ splice site, leading to the formation of a “growing intron loop.” Loop formation may facilitate scanning of nascent pre-mRNA for the 3′ splice site, functional pairing of distant intron ends, and prespliceosome assembly. Our results provide a starting point for a mechanistic analysis of cotranscriptional spliceosome assembly and the biogenesis of mRNA isoforms by alternative splicing.
This is an article distributed under the terms of the Science Journals Default License.