Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells

See allHide authors and affiliations

Science  22 Jan 2021:
Vol. 371, Issue 6527, pp. 390-395
DOI: 10.1126/science.abb8687

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Opening charge transport pathways

In perovskite solar cells, the insulating nature of passivation layers needed to boost open-circuit voltage also increases the series resistance of the cell and limits the fill factor. Most improvements in power conversion efficiency have come from higher open-circuit voltage, with most fill factor improvements reported for very small-area cells. Peng et al. used a nanostructured titanium oxide electron transport layer to boost the fill factor of larger-area cells (1 square centimeter) to 0.84 by creating local regions with high conductivity.

Science, this issue p. 390


Polymer passivation layers can improve the open-circuit voltage of perovskite solar cells when inserted at the perovskite–charge transport layer interfaces. Unfortunately, many such layers are poor conductors, leading to a trade-off between passivation quality (voltage) and series resistance (fill factor, FF). Here, we introduce a nanopatterned electron transport layer that overcomes this trade-off by modifying the spatial distribution of the passivation layer to form nanoscale localized charge transport pathways through an otherwise passivated interface, thereby providing both effective passivation and excellent charge extraction. By combining the nanopatterned electron transport layer with a dopant-free hole transport layer, we achieved a certified power conversion efficiency of 21.6% for a 1-square-centimeter cell with FF of 0.839, and demonstrate an encapsulated cell that retains ~91.7% of its initial efficiency after 1000 hours of damp heat exposure.

View Full Text

Stay Connected to Science